18. $x^2 - 14x + 45 (x - 5)(x - 9)$

5–7 Factoring Pattern for $x^2 + bx + c$, c positive

Objective: To factor quadratic trinomials whose quadratic coefficient is 1 and whose constant term is positive.

Vocabulary/Patterns

Factoring patterns for $x^2 + bx + c$ when c is positive:

When b is positive: (x + ?)(x + ?)When b is negative: (x - ?)(x - ?)

Prime polynomial A polynomial with integral coefficients whose greatest monomial factor is 1 and which can't be written as a product of polynomials of lower degree. For example, $a^2 - 10a - 14$ is prime.

Example	1	Factor x^2	+	6 <i>x</i>	+	8.

Solution

1. The coefficient of the linear term is positive. The pattern is (x + ?)(x + ?).

List the positive factors of 8.

Factors Sum of the factors of 8 8 2 4 6 -

-3 | -5

- 2. Find the pair of factors whose sum is 6: 4 and 2.
- 3. Therefore $x^2 + 6x + 8 = (x + 4)(x + 2)$.

You can check the result by multiplying (x + 4) and (x + 2). $(x + 4)(x + 2) = x^2 + 2x + 4x + 8 = x^2 + 6x + 8$

Factor $x^2 - 8x + 15$. Example 2

Solution

Sum of 1. The coefficient of the linear term is negative. Factors of 15 the factors The pattern is (x - ?)(x - ?)List the pairs of negative factors of 15. -1 - 15-16

- 2. Find the pair of factors whose sum is -8: -3 and -5.
- 3. Therefore $x^2 8x + 15 = (x 3)(x 5)$.

Factor. Check by multiplying the factors. If the polynomial is not factorable, write prime.

1.
$$x^2 + 4x + 3$$
 (x + 1)(x + 3)

$$3 c^2 - 9c + 14 (c - 2)(c - 7)$$

3.
$$c^2 - 9c + 14$$
 (c - 2)(c - 7)

5.
$$r^2 - 5r + 6 (r - 2)(r - 3)$$

7.
$$q^2 + 15q + 14$$
 (q + 14)(q + 1)
9. $q^2 - 13q + 22$ (a - 2)(a - 11)

9.
$$u^2 = 13u + 22$$
 ($u = 2$)($u = 11$)
11. $x^2 + 18x + 32$ ($x + 2$)($x + 16$)

2.
$$x^2 + 8x + 7 (x + 1)(x + 7)$$

4.
$$y^2 - 8y + 12 (y - 2)(y - 6)$$

6.
$$p^2 - 13p + 12 (p - 1)(p - 12)$$

8.
$$n^2 + 9n + 14 (n + 2)(n + 7)$$

10.
$$s^2 - 12s + 30$$
 prime

12.
$$x^2 - 15x + 26$$
 (x - 2)(x - 13)

5-7 Factoring Pattern for $x^2 + bx + c$, c positive (continued)

Example 3 Factor $v^2 - 10v + 16$.

NAME

Solution

1. Since -10 is negative, think of the negative factors of 16 in your head. (After a little practice you will not need to write all the factors down.)

- 2. Select the factors of 16 with sum -10: -2 and -8.
- 3. Therefore $y^2 10y + 16 = (y 2)(y 8)$.

Factor. Check by multiplying the factors. If the polynomial is not

13.
$$a^2 + 10a + 30$$
 prime

13.
$$a^2 + 10a + 30$$
 prime
14. $x^2 - 19x + 60$ (x - 4)(x - 15)
15. $k^2 - 21k + 54$ (k - 3)(k - 18)
16. $n^2 + 23n + 90$ (n + 5)(n + 18)

17.
$$k^2 - 10k + 21$$
 $(k - 3)(k - 7)$

19.
$$k^2 + 7k + 12$$
 (k + 3)(k + 4)
20. $x^2 - 16x + 48$ (x - 4)(x - 12)
21. $a^2 - 11a + 20$ prime
22. $x^2 + 22x + 72$ (x + 4)(x + 18)

21.
$$a^2 - 11a + 20$$
 prime
22. $x^2 + 22x + 72$ (x + 4)(x + 18)
23. $72 - 17z + z^2$ (9 - z)(8 - z)
24. $20 - 12c + c^2$ (2 - c)(10 - c)

25.
$$54 - 15a + a^2$$
 (9 - a)(6 - a) 26. $63 - 16c + c^2$ (9 - c)(7 - c)

Example 4 Factor
$$x^2 - 12xy + 32y^2$$
.

Solution
$$x^2 - 12xy + 32y^2 = (x - ?)(x - ?)$$
 Write the factoring pattern.
= $(x - 4y)(x - 8y)$ Fill in the negative factors of $32y^2$.

Factor. Check by multiplying the factors. If the polynomial is not factorable, write prime.

27.
$$x^2 - 11xy + 28y^2$$
 (x - 7y)(x - 4y) 28. $a^2 - 9ab + 18b^2$ (a - 3b)(a - 6b)

9.
$$c^2 - 18cd + 45d^2$$
 (c - 3d)(c

29.
$$c^2 - 18cd + 45d^2$$
 (c - 3d)(c - 15d) 30. $x^2 - 10xy + 21y^2$ (x - 3y)(x - 7y) 31. $c^2 - 14cd + 24d^2$ (c - 12d)(c - 2d) 32. $x^2 + 11xy + 30y^2$ (x + 6y)(x + 5y)

33.
$$y^2 - 16yz + 48z^2 (y - 4z)(y - 12z)$$

35.
$$d^2 + 10de + 24e^2 (d + 4e)(d + 6e)$$

Mixed Review Exercises

Solve.

86

1.
$$-12 + x$$

4.
$$a + 3 = |2 - 9|$$
 {4

5.
$$17m = 68$$
 {

1.
$$-12 + x = -7$$
 {5} 2. $d + (-4) = -9$ {-5} 3. $-12 + b = 13$ {25} 4. $a + 3 = |2 - 9|$ {4} 5. $17m = 68$ {4} 6. $3p + 15 = -60$ {-2

7.
$$-\frac{1}{3}x = 9 \{ -27 \}$$

6.
$$3p + 15 = -60 \{ -25 \}$$

4.
$$a + 3 = |2 - 9|$$
 4 5. $1/m = 68$ **4 6.** $3p + 15 = -60$ **7 7.** $-\frac{1}{3}x = 9$ **8.** $\frac{r}{2} - 3 = 6$ **18 9.** $-18x = 162$ **9.** $-18x = 162$ **9.** $-18x = 162$ **9.** $-18x = 162$

34. $a^2 - 18ab + 45b^2$ (a - 3b)(a - 15b)

36. $v^2 - 27vz + 72z^2 (v - 3z)(v - 24z)$